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SUMMARY

In the present study a dynamic grid adaptation (DGA) algorithm is utilized for predicting �ow around a
circular cylinder in sub-critical �ow regime at a Reynolds number of 1:4×105. The reason for adopting
a DGA algorithm is the unsteadiness of the �ow �eld which makes a conventional mesh ine�cient.
The concept being adopted is to concentrate mesh re�nement in regions with high gradients and high
turbulent viscosity, while in the region further downstream where the �ow is fully developed a coarser
mesh will develop and turbulence is modelled with the large eddy simulation (LES) turbulence model.
The aim of the study is to present an appropriate variable for mesh re�nement, which accomplishes

a high rate of mesh re�nement in the region with high gradients. The new variable is a product of
the local mesh cell size and the rate of strain and includes two additional variables to allow control
over the re�nement behaviour. The results are compared with experimental data at the corresponding
Reynolds number and also with numerical results obtained with conventional mesh. It is demonstrated
that DGA algorithms can give results of a very high quality for a mesh that is signi�cantly smaller
than for a conventional mesh. Copyright ? 2003 John Wiley & Sons, Ltd.

1. INTRODUCTION

The present study deals with the simulation of �ow around a circular cylinder at a Reynolds
number of 1:4×105. Several studies have been reported for this type of �ow [1] and it is
gradually accepted that it is a di�cult test case for computational �uid dynamics (CFD) [2].
Tutar and Hold�’s results suggest that the large eddy simulation (LES) method gives improved
results compared to those of other Reynolds averaging Navier Stokes (RANS) based turbulence
models and Breuer [2] demonstrates the considerable mesh requirements of the LES type of
simulations. In order to overcome the mesh requirements and still obtain results of good quality
the present work investigates the suitability of a dynamic grid adaptation (DGA) algorithm.
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Frequently meshes are generated where due to mesh construction methods the resolution is
high in regions where gradients are not signi�cant. Consequently, such meshes have a large
number of redundant cells. Conversely, due to time variations in the computed �ow �eld,
there will be regions where the mesh resolution is insu�cient. The aim of the present work
was to use DGA methods to generate mesh re�nement in important regions and conversely
to reduce mesh re�nement in regions with low gradients.
To achieve this aim it was necessary to de�ne and develop mesh re�nement variables.

There have been many developments related to adaptive methods and adaptive grid strategies
[3–6]. However, there is comparatively little work reported on grid adaptation with turbulent,
unsteady �ows. The present work is focussed on the determination of a reliable re�nement
variable.
In this work the CFD code REACFLOW [7] has been utilized. This code has adopted

the projection method in the solution procedure and uses a triangular mesh. Due to the
triangular mesh being used in the REACFLOW code the de�nition of the length scale in
the LES turbulence model has to be considered. The LES turbulence model belongs to the
Eddy viscosity type of turbulence models and calculates the turbulent viscosity element wise
from both the rate of strain and the cell size of the element. In this work two methods for
calculating the length scale are presented.

2. BACKGROUND

The work being undertaken focusses both on grid adaptation and LES turbulence modelling.
The suitability of a LES turbulence model in combination with DGA lies in the concept
being chosen for calculating turbulent viscosity. In this turbulence model, turbulent viscosity
is proportional to the cell size of the element, therefore an increase in mesh resolution will
lead to a reduction in local turbulent viscosity. In case of a very �ne mesh the contribution of
the LES turbulence model vanishes and the �ow is practically calculated without turbulence
model.

2.1. Dynamic grid adaptation

One method to reduce the numerical error is by reducing the size of the discretization elements.
However, an excessive increase in mesh resolution would lead to insurmountable demand
for computational power. As a consequence a mesh sensitivity analyses is required to �nd
consensus in numerical error and computational demand. This requires the user to estimate
before hand the regions of interest. Research has shown that the �ow prediction is sensitive
to the mesh resolution, this numerical behaviour indicates a need for dynamically generated
mesh, which adapt the mesh to the �ow �eld to cover interesting �ow phenomena in high
detail. A well developed and robust DGA algorithm can lead to a reduction in both numerical
error and computational requirements. This appealing feature has encouraged the CFD society
to develop a whole range of algorithms for DGA of di�erent applicability and complexity.

2.1.1. Re�nement strategies. In recent years a whole series of strategies have been developed,
a small number of these strategies are preprocessing based and focus on a geometry based
mesh re�nement. For CFD purposes the majority of the strategies is focussing on a solution
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based mesh re�nement. This work will deal with the solution based mesh re�nement. Three
approaches can be distinguished;
R-re�nement or grid movement (relocation): In this approach a basically �xed number of grid
points is used, but the point positions are moved in such a way so that the grid points
concentrate in critical spatial areas [8]. R-re�nement plays an important and growing role
in computational �uid dynamics, especially where the �uid interacts with moving walls (as
in piston engines or structures yielding to an overpressure).

H-re�nement in this approach a variable number of grid points is used. Points are added
to, or removed from, the grid according to the local requirements, without changing the
positions of the other grid points. As a result the grid is locally re�ned or coarsened [5].

P-re�nement in this approach a principally �xed grid is used, but adaptive solution is ob-
tained by locally varying the order of spatial discretization. Methods which do accomplish
the addition of higher order shape functions are either the conventional polynomials [9],
spectral element functions [10] or hierarchical shape-functions [11]. P-re�ning methods are
increasingly used in �nite-element methods, often together with h-re�ning methods [5].

2.1.2. Indication of error. In �ow simulations the regions of interest will naturally be regions
where there are strong gradients. The issue of grid re�nement is to modify the grid and focus
on the regions of interest.
The information about the regions where the grid should be re�ned or coarsened ideally

should be provided by an error estimator. Error estimation for �uid �ow calculations is not an
easy task. The Navier–Stokes equations are a coupled, non-linear system and errors present
in any one of these �elds in general will e�ect the solutions of all others, in a non-linear
manner di�cult to describe accurately. The discretization error describes the deviation from the
analytical solution of the set of di�erential equations, but is not directly accessible. However,
it is possible to construct approximations to this error.
There are a number of adaptive methods in CFD which are designed to be used in combi-

nation with �nite element, �nite volume and �nite di�erence schemes. The di�erent schemes
can be divided in four groups:

• Jump in property variable.
• Interpolation theory.
• Comparison of derivatives.
• Residue of partial di�erential equation.

2.2. LES turbulence model

The �uctuations occurring in the �ow can be associated with a range of di�erent turbulence
scales, also known as eddies. The large scales are associated to low frequency vortices and
their behaviour is dominated by the main �ow. The small scales are more isotropic and
uniform in their behaviour, consequently the e�ects of small scales are easier to estimate.
The idea behind LES turbulence modelling is to use a mesh �ne enough to ensure that the

larger scales can be resolved explicitly by the mesh, while the small scales—called subgrid
scales—which cannot be observed in the numerical domain, are estimated via the LES model
assumptions. The small scales are taken into account via an extra dissipation term, which
accounts for the energy dissipation which occurs in the small scales.
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For the turbulent �ow computations the space averaged Navier–Stokes equations of an
incompressible �uid are written as

@ui
@t
+ uj

@ui
@xj
= − 1

�
@p
@xi

+
(�lam + �t)

�
@2ui
@xj@xj

(1)

Here the overbar represents the �ltered variable. The term �t for the space averaged equation is
called the subgrid scale viscosity or turbulent viscosity. Smagorinsky [12] proposed a method
of calculating the subgrid scale viscosity as shown in Equation (2).

�t = �l2s | �S| (2)

ls =Cs� (3)

Here Cs is the Smagorinsky constant, which normally has a value in the range 0.10–0.25,
� is the subgrid length scale associated to the grid size. The quantity �Sij is the resolvable
strain rate given by Equation (4).

�Sij=
1
2

(
@�ui
@xj

+
@�uj
@xi

)
(4)

In the next step the locally calculated turbulent viscosity, which for each element varies in
magnitude, is added to the laminar viscosity. In the new time step, the governing equations
will be resolved, including the turbulent viscosity to account for the subgrid scales.

2.2.1. Near wall treatment. For the LES simulation no wall function is used, but wall e�ects
were taken into account by reducing the length scale in the vicinity of the cylinder surface. A
damping variable Ddamp was introduced to reduce the Smagorinsky constant in a region 20%
of the cylinder diameter around the cylinder. The damping function has an alternative form
to the standard van Driest damping function as shown in Equation (5). This was suggested
by Tutar and Hold� [1] who indicated that the use of the standard van Driest wall function
for separated �ows, i.e. a �ow passing a circular cylinder, is questionable.

Ddamp=1− e−(y+=A+)2 (5)

Here A+ is a constant, which in accordance with literature, is assumed to be 25, y+ is the
distance of the element to the wall in terms of wall-shear units, i.e. y+=yu�=�. The shear
friction velocity u� is calculated from the velocity gradient at the wall, i.e. u�=

√
�du=dy. Thus,

by taking the wall e�ects into account, a damped value for the length scale is calculated in
the wall region via ls=Cs�Ddamp.

3. REACFLOW CFD SOLVER

For the simulations carried out in this work the CFD code REACFLOW [7] has been utilized.
REACFLOW calculates the solution to the multicomponent, variable-density incompressible
Navier–Stokes equations. The spatial discretization of the equations is based on an unstructured
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triangular mesh. The primitive variables are all discretized in a cell-centred fashion, with one
value for each variable in each triangular element. The variables are assumed to have a given
functional dependency inside each element.
The pressure p is discretized in a vertex-centered fashion, where each pressure value is

de�ned on a control volume, delimited by the medians in all the triangles surrounding the
given vertex. This choice of discretization has been made to suppress the ‘checkerboard’
instability.
For incompressible �ows the velocity must satisfy the divergence-free criterion: @ui=@xi=0.

This introduces an extra constraint which replaces the traditional equation of state. It also
makes the sound speed in�nite, so a degree of implicitness must be employed in the timestep-
ping.
The numerical method used is similar to the predictor–corrector method of Chorin [13].

The solutions to the equations for mass, mass fractions and internal energy are all advanced
in an explicit fashion.
For the velocity, an intermediate state, u∗i is found by advancing all the terms except the

pressure gradient term explicitly. A Poisson equation is then found for the pressure by taking
the divergence of the velocity equation:

@un+1i

@xi
=
@u∗i
@xi

− �t
�n+1

@
@xi

(
@pn+1

@xi

)
(6)

The �nal velocity must be divergence-free, so the term on the left-hand side of Equation (6)
vanishes.
The solver uses a numerical discretization method very similar to a �nite-volume method,

where the unknowns are the integrals of the primitive variables over each element. The
contributions from the advective terms may then be calculated as an integral over the element
boundary of the �uxes, denoted as �wj≡

∫
	j
w(xi) dV=|	j|. For a given element 	 and a given

�eld w this gives: ∫
	
uni
@wn

@xi
dV � uni

∫
	

@wn

@xi
dV =uni

∫
@	
niwn dS (7)

where the Green’s theorem is used to obtain the surface integral in the last equality.
The �nite-volume formulation gives values for the integral over the elements of the primitive

variables. In order to calculate the surface integrals of Equation (7) a function w̃j(xi) for w
must be found in 	j such that

∫
	j
w̃j dV = |	j|wj.

If w̃j(xi) is assumed constant (equal to �wj), the resulting numerical scheme will be �rst-
order accurate in space. Choosing a linear dependency in space for w̃j nearly second-order
accuracy in space can be obtained. To �nd the associated constant gradient the gradient of w in
the control volumes is determined. This can be found using Green’s theorem over the control
volume boundary, using the (assumed constant) values of w inside each element touching the
control volume. The gradient in the element may then be found by the following rule:

|w|e=
{
kminCV|e |w|CV|e if kminCV|e |w|CV|e¡min∗CV|e |w|CV|e
min∗CV|e |w|CV|e if kminCV|e |w|CV|e¿min∗CV|e |w|CV|e

(8)

where minCV|e is the minimum over the control volumes touching element e, and min∗ is
the minimum of all the values but the minimum (i.e. the second-smallest value). If k=1
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the minimum of the gradients in the control volumes is always chosen. This corresponds to
the minmod limiter [14]. In order to preserve the total variation diminishing (TVD) property
it must be demanded that k62, with k=2 corresponding to the Superbee limiter [14]. The
minmod limiter is the most di�usive one, but possibly yields the more robust numerical
solutions, whereas the superbee limiter yields sharper pro�les near discontinuities. To minimize
the numerical di�usion in order not to mask the e�ects of turbulent viscosity Roe’s superbee
limiter was selected.

4. SOFTWARE DEVELOPMENT

4.1. Dynamic grid adaptation

The re�nement strategy being used in the REACFLOW code is the so-called h-re�nement,
where grid points are added and removed based on the error estimation and the error bounds,
de�ned at the start of the simulation. The re�nement of the mesh always takes place across
the longest edge of the triangular element, which ensures that triangles with very high aspect
ratio are not formed.

4.1.1. Method for error indication. The method for error indication implemented is an esti-
mation of the local interpolation error. For a given variable of interest, q, an interpolated value
for a grid point xi can be de�ned. This value q̂i can be de�ned in various ways. However,
in the present work the arithmetical mean is de�ned over the neighbour grid points:

q̂i≡
1
N

N∑
j=1
qj (9)

where qj are the values of the variable at the jth of the N neighbours of the grid point xi.
The interpolated value may now be compared with the actual value in that grid point, qi. If
the absolute value of the di�erence

ei≡ |qi − q̂i| (10)

is greater than a prede�ned value, a new grid point will be inserted in the vicinity.
An error estimation of this kind assumes the solution to be smooth and will lead to mesh

re�nement in the region where there is a variation in the re�nement variable. An advantage
of the interpolation method, in comparison to other methods, is that all neighbour elements
are included in the determination of a new node, leading to a smoother mesh re�nement.

4.1.2. Re�nement variable. The determination of an appropriate re�nement variable to
approximate the discretization error depends very much on the physical problem investi-
gated. Widely used re�nement variables in this respect are the density, pressure and velocity
gradients, as well as the turbulent viscosity. However, the discretization error describing
the deviation from the analytical solution of the set of di�erential equations is not directly
accessible. Therefore, the re�nement variable is a compromise between the quality of the error
indication and the computational complexity of the re�nement variable.
Modi�cation to turbulent viscosity as a re�nement variable: The variable used in this

work is derived from the equation for turbulent viscosity in the LES turbulence model. By
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varying the weight of either the cell size or the strain rate, by means of the DGA variables
Cm and Cstr , a di�erent adaptation behaviour can be established. The DGA variables Cm and
Cstr have to be de�ned at the start of the simulation, and are constant throughout the domain.
An increase of the variable Cm will lead to a more solution independent mesh re�nement,
while an increase in the variable Cstr will lead to a mesh re�nement in the regions where
high velocity gradients exist.

qi=�C2s �
Cm | �S|Cstr (11)

4.2. Turbulence model

Modelling turbulent �ow with the Standard Smagorinsky LES turbulence model requires the
implementation of Equation (2). This equation calculates the subgrid scale viscosity by means
of four parameters:

• Subgrid length scale �.
• Density �.
• Smagorinsky constant Cs.
• Rate of strain | �S|.
Both density and rate of strain can be obtained from the CFD code, while the Smagorinsky

constant can be set to 0.15, as suggested in literature [12, 15]. Extra attention was given to
the de�nition of subgrid length scale, because of the triangular shape of the elements.
Subgrid length scale: A widely used de�nition for the subgrid length scale in 2-D rectangu-

lar mesh is �=
√
�x�y, nevertheless in several studies it was found that �=

√
2�x�y leads

to more accurate results than �=
√
�x�y [16] and in some cases even �=

√
�x�y¿2 seems

necessary [17]. In the work of Vreman et al. [16] the subgrid length scale � in LES was set
equal to �=

√
2�x�y, indicating that a minimum of two elements is taken to represent the

smallest eddies resolved in the �ow �eld. In other words, what is the minimum grid being
necessary for resolving a turbulent scale in a triangular unstructured mesh. The smallest pos-
sible scale to be modelled employs three grid point, in such case the length scale is de�ned
as the square root of the element surface. However, it is questionable if three grid points are
su�cient to model a turbulent scale and therefore a second de�nition for the subgrid length
scale is proposed. In the second de�nition twice the surface area is used for the subgrid length
scale, which implies four grid points are required to model a turbulent scale properly.
The �rst de�nition for the subgrid length scale is based on the surface area of the element

and reads:

�=

√
�x�y

2
=
√
Atr (12)

In the second de�nition for subgrid length scale a conventional de�nition is utilized which
reads:

�=
√
�x�y=

√
2Atr (13)

This de�nition suggests that two elements are required for resolving a turbulent scale. Com-
pared to �=

√
Atr , LES results obtained with �=

√
2Atr are less sensitive to discretization

errors. A larger �=
√
Atr ratio leads to smaller discretization errors, but on the other hand the
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�=
√
Atr ratio is required to be as small as possible in order to retain a maximum amount of

information in the resolved scales.

5. SIMULATION RESULTS AND DISCUSSIONS

5.1. Computational domain and simulations

The computational domain and boundary conditions used for the simulations with DGA are
shown in Figure 1(b) shows the mesh at the start of the simulation. At the inlet boundary
a uniform velocity pro�le is imposed, while on the outlet boundary pressure is imposed and
velocity is set free. No-slip boundary conditions are applied to the cylinder wall and all
velocity components are set to zero. On both horizontal boundaries velocity is imposed; the
velocity in the y direction is set to v=0 so that no �ow can be drained o� or entrained
via these boundaries. To ensure no mesh re�nement will take place along the horizontal
boundaries, the x-component of the velocity is set equal to the velocity imposed at the inlet
in order not to maintain any velocity gradient along the horizontal boundaries.
In this work a total of seven simulations were carried out. The �rst two simulations pre-

sented are carried out with conventional mesh using 6:1×104 nodes and a subgrid length scale
�=

√
Atr and

√
2Atr , respectively. The other �ve simulations have utilized the DGA algorithm.

The con�guration of the DGA algorithm required speci�cation of the DGA variables Cm and
Cstr , threshold values for mesh re�nement and coarsening, as well as a minimum mesh size to
restrict excessive mesh re�nement. Details of the DGA con�guration are presented in Table II.
The �ow pro�les shown are the time integrated streamwise velocity component both in

streamwise and transverse direction, as well as the turbulent shear stress along the transverse
axis. In addition drag coe�cient C‡

D , Strouhal number S
§
t and separation angle are calculated

from the time integrated �ow �eld and presented in Table I.
The existence of periodic waves, as well as motions associated with turbulence in the �ow

�eld, requires the data to be integrated in time so as to obtain �ow features associated to time
integrated values obtained by experiments [18]. The �ow in the near wake can be viewed
formally as a combination of a global mean component �s, a periodic component s̃, and a
�uctuating component s′, where s is any variable. By de�nition the total variable s is the sum

s= �s+ s̃+ s′ (14)

The mean component is calculated by an averaging process, as shown in Equation (15),

N �s=
N∑
n=1
sn (15)

while the periodic motions are distinguished from the turbulent motion via a fast fourier
transform (FFT). The �uctuating component s′ which remains is associated with turbulence
and can be used to calculate the Reynolds stresses u′iu′j.

‡The drag coe�cient is the sum of the streamwise pressure forces acting on the cylinder relative to the density
and inlet velocity CD=2FD=�u2∞.§Strouhal number is the frequency of the periodic wave relative to cylinder diameter and inlet velocity St=fD=u∞.
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Figure 1. Dimensions of simulation model and initial mesh: (a) dimensions in ratio of cylinder diameter;
(b) initial mesh containing 7500 nodes; (c) initial mesh near the wall.
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Table I. Flow parameters for a circular cylinder at Re=1:4e5.

CD St Separation angle (deg)

Reference [18] 1.24 0.179 77
ls =Cs

√
Atr | nodes=6:1×104 — 0.174 86

ls =Cs
√
2Atr | nodes=6:1×104 — 0.160 90

Cm=1 |Cstr =1 | nodes=2:8×104 1.45 0.180 96
Cm=1 |Cstr =1 | nodes=4:3×104 1.47 0.188 89
Cm=1 |Cstr =1 | nodes=4:5×104 1.35 0.210 95
Cm=1 |Cstr =2 | nodes=1:4×104 1.46 0.173 81
Cm=1 |Cstr =2 | nodes=2:8×104 1.38 0.176 85

Table II. Con�guration of DGA algorithm.

Cm |Cstr | nodes Upper threshold Lower threshold Max. mesh resolution (1=Atr)

Cm=1 |Cstr =1 | 2:8×104 5:0×10−4 2:50×10−4 2:44×105
Cm=1 |Cstr =1 | 4:3×104 2:5×10−4 1:25×10−4 2:44×105
Cm=1 |Cstr =1 | 4:5×104 2:5×10−4 1:25×10−4 9:80×105
Cm=1 |Cstr =2 | 1:4×104 7:0×10−4 3:50×10−4 2:44×105
Cm=1 |Cstr =2 | 2:8×104 3:5×10−4 1:75×10−4 2:44×105

5.2. Basic �ow features

In this work a variety of simulations is presented and compared with the experimental data
from Cantwell and Coles [18]. Although the comparison of simulation results and experi-
mental data is crucial to validate the �ow �eld, a critical remark has to be added here. It
is well known that the �ow around a cylinder is not only dependent on the Reynolds num-
ber, but on a variety of in�uencing factors. The most important ones are the ratio between
cylinder diameter and cylinder length, the blockage ratio of the cylinder, the end conditions,
the roughness of the cylinder and the free-stream turbulence level. This typically leads to
highly scattered experimental data such as the data collection by Cantwell and Coles [18]
for the drag coe�cient and the Strouhal number demonstrates. Therefore di�erences between
experimental conditions and the simulation results are apparent. The most relevant ones in
this investigation are the 2-D simpli�cation and the zero turbulence level at the in�ow, which
is not feasible in wind or water tunnel experiments.
The results obtained from the simulations using DGA as well as a conventional mesh

show strong variation in the �ow prediction. The dimensions of the wake region behind
the cylinder, as well as the turbulence intensity along the transverse axis are predicted with
varying success, as shown in Figures 2–10. For the simulations using DGA the recirculation
region is predicted to be half the cylinder diameter in most of the simulations which agrees
with the experimental data. Only an exceptional deviation with experimental data is apparent
in the simulation with Cm and Cstr being both 1 and a mesh containing 2:8×104 nodes;
here the recirculation region is predicted to be a quarter of the cylinder diameter. The small
dimensions of the recirculation region are con�rmed by the separation angle which is predicted
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Figure 2. Time averaged normalized velocity along streamwise axis at y=D=0, for simulations using
conventional mesh with 6:1×104 nodes.
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Figure 3. Time averaged normalized velocity along transverse axis at x=D=1, for simulations using
conventional mesh with 6:1×104 nodes.

to be 96◦, an over prediction of 19◦ in the separation angle indicates a narrow wake. As the
wake is decreasing in size a reduction in drag coe�cient would be expected, nevertheless the
drag coe�cient is predicted to be 1.47 in the simulation with Cm and Cstr being both 1 and
mesh containing 2:8×104 nodes. The over prediction of drag coe�cient is typical for most of
the simulations presented and is also shown in previous work of Tutar and Hold� [1] and
Breuer [2].
The velocity decay is predicted well for the simulations using Cm=1 and Cstr =2, however

there is a lack of agreement in the simulation with Cm and Cstr being 1 and 2, respectively
and a mesh containing 2:8×104 nodes, in the region 3–5 cylinder diameters away from the
cylinder. Similarly, the downstream region deviates from experimental data in the simulations
with a mesh containing 4:3×104 and 4:5×104 nodes, respectively, indicating a short wake
region. Both simulations have over predicted the Strouhal number with 5 and 17%, respec-
tively, while in all other simulations Strouhal number is predicted in good agreement with
experimental data. Surprisingly the deviation with experimental data grows with increasing
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Figure 4. Time averaged normalized shear stress due to turbulence along transverse axis at x=D=1, for
simulations using conventional mesh with 6:1×104 nodes.
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Figure 5. Time averaged normalized velocity along streamwise axis at y=D=0, for simulations
using DGA constants Cm=1− Cstr =1.

mesh resolution. The prediction of turbulent shear stress in the wake region con�rms that an
increase in mesh resolution does not automatically lead to an improvement of the �ow predic-
tion. Although there is a clear trend that an increasing mesh resolution leads to an increase in
shear stress, the simulation using a mesh of approximately 4:5×104 nodes does over predict
the shear stress by about 25%. A reduction in quality of the prediction with increasing mesh
resolution was not expected beforehand. Nevertheless, trends of this kind where also seen in
the work of Breuer [2]. Distinct arguments for these trends are di�cult to present as this
problem relates to the resolution of small scale vortices of the small scale �ow phenomena.

5.3. E�ects of the subgrid length scale

A comparison of the two simulations, using conventional mesh, with the experimental data
from Cantwell and Coles [18] shows that the average velocity �eld is predicted well in both
simulations. For turbulent shear stress, Strouhal number and separation angle there is less
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Figure 6. Time averaged normalized velocity along transverse axis at x=D=1, for
simulations using DGA constants Cm=1− Cstr =1.
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Figure 7. Time averaged normalized shear stress due to turbulence along transverse axis at x=D=1, for
simulations using for simulations using DGA constants Cm=1− Cstr =1.

agreement with experimental data. The turbulent shear stress pro�les do indicate that turbulent
viscosity is over predicted with the second subgrid length scale (�=

√
2Atr) and that initial

instabilities in the �ow �eld are di�used. For Strouhal number and separation angle there is
a growing deviation from experimental data when applying the second de�nition for subgrid
length scale. Based on the results of both simulations and the deviation with experimental data
it is concluded that a better �ow �eld is obtained with the subgrid length scale (�=

√
Atr).

For this reason the remaining simulations with DGA were carried out with the �rst de�nition
for subgrid length scale.

5.4. In�uence of grid adaptation constants Cm and Cstr

With the introduction of the two variables Cm and Cstr in the re�nement variable there is a user
de�ned control. The use of the adaptation constants for the grid adaptation is clearly shown
in Plates 2 and 3. In the �rst �gure a smooth mesh re�nement has taken place in the shear
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Figure 8. Time averaged normalized velocity along streamwise axis at y=D=0, for simulations
using DGA constants Cm=1− Cstr =2.
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Figure 9. Time averaged normalized velocity along transverse axis at x=D=1, for
simulations using DGA constants Cm=1− Cstr =2.

layers and along the cylinder, while in the latter the re�nement is sharp and narrow and more
focussed on areas that maintain a high rate of strain. Therefore, despite the limited number
of nodes in the simulation with Cm=1, Cstr =2 and 1:4×104 nodes, its smallest element
(Table III) is still smaller than the equivalent element (Table III) in the simulation with Cm=1,
Cstr =1, and 2:8×104 nodes, as shown in Table III. The e�ect of the adaptation constants is
seen particularly well in the vortices and the surrounding area as shown in Figure 11.
The variation in �ow prediction is primarily due to mesh re�nement and con�rms the

complexity of the physical processes in which certain �ow regions and vortex scales in the
�ow �eld are over proportionally important. This means that the determination of a proper
re�nement variable can not be decoupled from the physics that are under investigation. A
good re�nement variable for separating �ows at high Reynolds numbers is not by de�nition
suitable for �ows where other features are of key interest. Nevertheless, it would be expected
that a high level of mesh re�nement is only required in limited areas.
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Plate 1. Mesh resolution (log 1=Atr) around circular cylinder for simulations using
conventional mesh with 61 000 nodes.

(a) (b)

Plate 2. Instantaneous mesh resolution (log 1=Atr), in fully developed �ow around circular cylinder for
simulations using DGA constants Cm=1− Cstr =1: (a) 14 000 nodes; (b) 28 000 nodes.
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Plate 3. Instantaneous mesh resolution (log 1=Atr), in fully developed �ow around cir-
cular cylinder for simulations using DGA constants Cm=1−Cstr =2| (a) 28 000 nodes;

(b) 43 000 nodes; (c) 45 000 nodes.
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Figure 10. Time averaged normalized shear stress due to turbulence along transverse axis at x=D=1, for
simulations using for simulations using DGA constants Cm=1− Cstr =2.

Table III. Maximum mesh resolution for a circular cylinder at Re=1:4e5.

Max. mesh resolution (1=Atr)

NO-DGA | nodes=6:1×104 7:20×104
Cm=1 |Cstr =1 | nodes=2:8×104 1:18×105
Cm=1 |Cstr =1 | nodes=4:3×104 1:55×105
Cm=1 |Cstr =1 | nodes=4:5×104 4:72×105
Cm=1 |Cstr =2 | nodes=1:4×104 1:55×105
Cm=1 |Cstr =2 | nodes=2:8×104 1:58×105

From the perspective of mesh correlation it is interesting that the �ow �eld predicted in the
simulation with Cm=1, Cstr =2 and a mesh containing 1:4×104 nodes has obtained not only
good agreement with experimental data, but also with the simulation using conventional mesh
and a subgrid length scale �=

√
Atr . Both simulations do maintain similar mesh resolution in

the vicinity of the wall and shear layer, the only signi�cant di�erence lies in the prediction
of turbulent shear stress towards the centreline. It could be argued that the lack of agreement
in turbulent shear stress occurs due to the coarse mesh away from the cylinder in the region
where the shear stress pro�le is located (Plate 1).
Despite the fact that in the simulation with Cm=1, Cstr =1 and 4:3×104 nodes, velocity

decay, drag coe�cient and separation angle are predicted with considerable error there is
a surprisingly good agreement in trend and magnitude of the shear stress pro�le. Although
none of the �ow pro�les and �ow parameters can be seen in isolation it is worth noticing
that the inclusion of small scale vortices in the vicinity of the wall, as in the simulation
with Cm=1, Cstr =1 and 4:5×104 nodes, will lead to an increase in turbulent shear stress,
as well as a deformation of the stress pro�le giving its peak stress at 0.3 cylinder diameters
from the centreline. The deformation of the stress pro�le means that there is a displacement
of turbulent activity towards the centreline. The displacement of turbulent activity suggests
that due to lower threshold values relatively more turbulent motions along the centreline are
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Figure 11. Instantaneous vector plot of �ow in the vicinity of the wall: (a) Cm=1| Cstr =1| 45,000
nodes; (b) Cm=1| Cstr =2| 28,000 nodes.

captured. The region along the centreline is thus more sensitive to sharper mesh re�nement
conditions in comparison with the outer region. This idea is con�rmed by Plates 2 and 3,
which show that the bulk of the additional re�nement is allocated in the recirculation region

between the upper and lower shear layer.
The lack of shear stress near the centreline in the simulation with Cm=1, Cstr =1, and

2:8×104 nodes, should be considered with respect to the mesh resolution at one diameter away
from the centre of the cylinder. In this region mesh resolution is only a fraction in comparison
with the simulation using conventional mesh. Therefore the importance of these vortices for
the �ow �eld is subject to discussion and the simulations indicate that the important �ow
mechanisms where the �ow will be determined take place further upstream, in the vicinity
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of the wall, separation point and shear layers. It is in these narrow regions where high mesh
resolution is required, therefore a better mesh adaptation is accomplished by using Cm=1
and Cstr =2. Here substantially less nodes are used in comparison with the simulations using
Cm=1 and Cstr =1, while better agreement is obtained with the experimental data.
Despite the support for the hypothesis being presented here, it is interesting to note that a

further mesh re�nement in the vicinity of the wall does not improve the �ow prediction. A
decay in the quality of the prediction could occur due to separation taking place in turbulent
mode, however the thin boundary layer up to the point of separation is resolved by about
6–10 elements and this number is smaller then in the work of Tutar and Hold� [1] and Breuer
[2] who used 15 and 25 grid points, respectively. There is no turbulent kinetic energy until
the point of separation which suggests that separation takes place in the laminar mode as
experimentally expected for a sub-critical Reynolds numbers forming free shear layers. It is
only in the separation point and shear layers where the mesh resolution exceeds the resolution
used in the work of Tutar and Hold� [1] and Breuer [2]. In this region the shear layer contains
about 30 elements in radial direction, while in clockwise direction the mesh resolution is about
3 elements per degree. In comparison, Tutar and Hold� and Breuer used 0.5 and 1 element
per degree respectively. The reason for strong mesh re�nement in clockwise direction, is
because mesh re�nement in the element always takes place over the longest edge, leading
to equilateral shaped elements. As a consequence small scale isotropic vortices are modelled,
which do not exist neither in the simulations with Cm and Cstr to be 1 and 2, respectively,
and a mesh containing 1:4×104 and 2:8×104 nodes nor in the work of Tutar and Hold� [1]
and Breuer [2]. It is a plausible conjecture that the small scale vortices of this type, generated
in the vicinity of the wall, lead to an increase in turbulent activity in the shear layers. As
the vortices in the shear layer are growing in magnitude due to coalescing with surrounding
vortices there will be an increase in turbulent intensity as supported by Figures 7–10. It is
suggested by Richardson [19], who investigated the interaction between scales of di�erent
size, that the scales which are comparable in size with the scales in the separation region
are e�ective in increasing the separation. Consequently, a di�erent �ow �eld is predicted
due to a large number of scales in the wake region. The major question relevant to this
conjecture is the physical representation of the small scale vortices. Although the numerics
are inextricably bound up with the physics to be modelled, numerical requirements have to be
ful�lled to ensure numerical stability of the �ow �eld. To full�ll these criteria imperfections
in the numerical scheme have to be accepted. In this respect it is important to mention
the �ux limiter used to ensure the TVD criteria. The existence of sharp velocity pro�les
makes the �ow �eld more sensitive to dispersion in the �ow �eld [14] leading to numerical
dispersion. Another aspect relevant to the modelling of the �ow �eld is the two-dimensional
simpli�cation in this work, as a consequence �ow motions in the spanwise direction, which
are expected to occur in real live are not considered. Therefore, the e�ect of three-dimensional
�ow motions on the �ow prediction is subject to discussion and is an interesting point for
further investigation.

6. CONCLUSION

The conventional meshes used in previous investigations have signi�cant drawbacks. Due
to the fact that the mesh is �xed throughout the simulation, a high mesh resolution has to
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be applied in all regions where complex �ow behaviour is expected. It is most likely that a
signi�cant percentage of the mesh will have only a marginal in�uence onto the �ow prediction,
leading to an ine�cient use of the nodes. Therefore a proper design of the mesh requires a
good understanding of the �uid dynamics being investigated, in particular if the �ow is of
high complexity as in �ows for industrial application for example. Therefore, there are several
advantages in using the DGA algorithm in �ows for industrial application.

• A solution based grid re�nement will minimize the need to estimate the �ow �eld be-
forehand. This aspect of DGA is shown in Plates 2 and 3. The mesh generated towards
the end of the simulation re�ect the �ow structures being modelled.

• There is no need for time consuming mesh testing
Despite the potential of DGA to use computational power more e�cient, a reliable grid re�ne-
ment thus depend on a proper error estimation which re�ects the need for mesh re�nement.
The present work also shows that the success of adaptive grid strategies depends signi�cantly
on a reliable error estimation and on the adequate determination of acceptable error bounds.
The importance of reliable error estimation and determination of error bounds on the �ow
prediction is shown in Figures 5–10 and Table I. The present work demonstrates that using a
modi�ed �t yields reliable results. A comparison of the simulations using DGA shows that an
increasing number of nodes does not lead to improvement of the �ow prediction. Instead, by
using the �ow prediction as a measure for the quality of mesh re�nement, the highest quality
of mesh is obtained in the simulation where Cm=1, Cstr =2 and the number of grid points
were 1:4×104. Here a strong, but narrow mesh re�nement has taken place in the vicinity of
the wall near the point of separation and in the small scale vortices in the shear layers further
downstream, while a coarse mesh is maintained in the wake region behind the cylinder. It
is encouraging that the results of this simulation compare well with the simulations using
conventional mesh. Further results of the use of DGA in simulation with Cm=1, Cstr =2 and
a mesh containing 1:4×104 nodes are:

• A reduction in nodes of approximately 75% and a mesh resolution in the re�ned areas
which is of equal order to the simulation using conventional mesh.

• The predicted �ow parameters and averaged velocity pro�les are in good agreement with
each other, nevertheless the main di�erences between both simulations, can be found
in the turbulent shear stress pro�les along the transverse axis as shown in Figures 7
and 10.

Both conventional mesh and DGA based simulations under predict the shear stress near the
centreline, but compare well with experimental results away from the centreline. Although the
limitations with DGA in tracking the smaller scale vortices cannot be neglected, the majority
of �ow parameters and �ow pro�les are in agreement with experimental data.

NOMENCLATURE

Atr element surface
A+ constant
Cd drag coe�cient
Cm adaptation constant for mesh
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Cs Smagorinsky constant
Cstr adaptation constant for strain
D cylinder diameter
Ddamp damping variable
ei estimated error
ls length scale
n instantaneous number of time step
N number of neighbour elements
p pressure
q re�nement variable
q̂i interpolated re�nement variable
Re Reynolds number
S volume of discretization element
| �S| magnitude of strain
Sij strain tensor
St Strouhal number
t time
u streamwise velocity component
u∗ streamwise intermediate velocity component
ui u, v, w for i=1; 2; 3, respectively
u∗i u∗, v∗, w∗ for i=1; 2; 3, respectively
�u average velocity
�ucl average centerline velocity
u′ streamwise �uc. velocity component
u� shear friction velocity
v lateral velocity component
V surface of discretization element
v′ lateral �uc. velocity component
x space in streamwise direction
xi x; y; z for i=1; 2; 3, respectively
y space in lateral direction
y+ distance in wall shear units
� subgrid length scale
	 discretization element
�lam laminar viscosity
�t turbulent viscosity
� kinematic viscosity
� density
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